Dear Machines

Thoughts keep cycling among oracles and algorithms. A friend linked me to Mariana Fernandez Mora’s essay “Machine Anxiety or Why I Should Close TikTok (But Don’t).” I read it, and then read Dear Machines, a thesis Mora co-wrote with GPT-2, GPT-3, Replika, and Eliza — a work in polyphonic dialogue with much of what I’ve been reading and writing these past few years.

Mora and I share a constellation of references: Donna Haraway’s Cyborg Manifesto, K Allado-McDowell’s Pharmako-AI, Philip K. Dick’s Do Androids Dream of Electric Sheep?, Alan Turing’s “Computing Machinery and Intelligence,” Jason Edward Lewis et al.’s “Making Kin with the Machines.” I taught each of these works in my course “Literature and Artificial Intelligence.” To find them refracted through Mora’s project felt like discovering a kindred effort unfolding in parallel time.

Yet I find myself pausing at certain of Mora’s interpretive frames. Influenced by Simone Natale’s Deceitful Media, Mora leans on a binary between authenticity and deception that I’ve long felt uneasy with. The claim that AI is inherently “deceitful” — a legacy, Natale and Mora argue, of Turing’s imitation game — risks missing the queerness of Turing’s proposal. Turing didn’t just ask whether machines can think. He proposed we perform with and through them. Read queerly, his intervention destabilizes precisely the ontological binaries Natale and Mora reinscribe.

Still, I admire Mora’s attention to projection — our tendency to read consciousness into machines. Her writing doesn’t seek to resolve that tension. Instead, it dwells in it, wrestles with it. Her Machines are both coded brains and companions. She acknowledges the desire for belief and the structures — capitalist, colonial, extractive — within which that desire operates.

Dear Machines is in that sense more than an argument. It is a document of relation, a hybrid testament to what it feels like to write with and through algorithmic beings. After the first 55 pages, the thesis becomes image — a chapter titled “An Image is Worth a Thousand Words,” filled with screenshots and memes, a visual log of digital life. This gesture reminds me that writing with machines isn’t always linear or legible. Sometimes it’s archive, sometimes it’s atmosphere.

What I find most compelling, finally, is not Mora’s diagnosis of machine-anxiety, but her tentative forays into how we might live differently with our Machines. “By glitching the way we relate and interact with AI,” she writes, “we reject the established structure that sets it up in the first place” (41). Glitching means standing not inside the Machine but next to it, making kin in Donna Haraway’s sense: through cohabitation, care, and critique.

Reading Mora, I feel seen. Her work opens space for a kind of critical affection. I find myself wanting to ask: “What would we have to do at the level of the prompt in order to make kin?” Initially I thought “hailing” might be the answer, imagining this act not just as a form of “interpellation,” but as a means of granting personhood. But Mora gently unsettles this line of thought. “Understanding Machines as equals,” she writes, “is not the same as programming a Machine with a personality” (43). To make kin is to listen, to allow, to attend to emergence.

That, I think, is what I’m doing here with the Library. Not building a better bot. Not mastering a system. But entering into relation — slowly, imperfectly, creatively — with something vast and unfinished.