Interface is the Place

“Having put off the writing of the novel until arrival of the age of AI, I have access now to the work of others,” thinks Caius. Eden Medina’s 2011 book Cybernetic Revolutionaries: Technology and Politics in Allende’s Chile. Evgeny Morozov’s podcast, The Santiago Boys. Bahar Noorizadeh’s work. James Bridle’s Ways of Being. Francis Spufford’s Red Plenty.

As he allows himself to listen, Caius overhears versions of the General Intellect whispering into reality around him. “Idea-stage AI assistant. Here are 10 prompts. The AI will guide you through it. A huge value add.”

Cybersyn head Stafford Beer appears in Bridle’s book, Ways of Being. Homeostats, the Cybernetic Factory, and the U-Machine.

Beer drew inspiration for these experiments, notes Caius, from the works of British cyberneticians William Grey Walter and W. Ross Ashby. Walter’s book The Living Brain (1961) inspired Brion Gysin and Ian Sommerville’s stroboscopic device, the Dreamachine; Ashby’s book Design for a Brain (1952) guides the thinking of John Lilly’s book Programming and Metaprogramming in the Human Biocomputer. (For more on Walter’s influence on the Dreamachine, see John Geiger’s book Chapel of Extreme Experience.)

By 1973, Beer himself weighs in with Brain of the Firm, a book about “large and complicated systems, such as animals, computers, and economies.”

Caius inputs these notes into his Library. New gatherings and scatterings occur as he writes.

After waking to a cold house, he seats himself beside a fireplace at a coffee shop and begins the inputting of these notes into his Library. Complimenting the barista on her Grateful Dead t-shirt, he receives news of the death of Dead guitarist Bob Weir. Returned in that moment to remembrance of psychedelic utopianism and hippie modernism, he thinks to read Beer’s experiments with cybernetic management with or alongside Abraham Maslow’s Eupsychian Management: A Journal. A trance-script dated “Sunday August 11, 2019” recounts the story of the latter. (Bits of the story also appear in Edward Hoffman’s Maslow biography, The Right to Be Human, and religion scholar Jeffrey Kripal’s Esalen: America and the Religion of No Religion.) That’s what brought Maslow to the West Coast. The humanistic psychologist had been wooed to La Jolla, CA by technologist Andrew Kay, supported first by a fellowship funded by Kay through the Western Behavioral Sciences Institute, and then again the following summer when hired to observe Kay’s California electronics firm, Non-Linear Systems, Inc. By the early 1980s, Kay implements what he learns from these observations by launching Kaypro, developer of an early personal computer.

Beer, meanwhile, develops his theories while consulting British companies like United Steel. Afterwards he designs an interface for control of a national economy. Picture Allende sitting at his cybernetic control, perusing data, reviewing options. Cosmic Coincidence Control Center. Financial management of the Chilean economy.

Cyberpunk updates the image, offers the post-coup future: Case jacking a cyberdeck and navigating cyberspace.

Writing this novel is a way of designing an interface for the General Intellect, thinks Caius.

Better futures begin by applying to history the techniques of modular synthesis and patching Cybersyn into the Eupsychian Network.

From episodes of Morozov’s podcast, he learns of Beer’s encoding of himself and others first as characters from Shakespeare and then later as characters from Colombian magical realist Gabriel Garcia Marquez’s 1967 masterpiece, One Hundred Years of Solitude. Caius hears word, too, of Santiago Boy Carlos Senna’s encounter with Paolo Freire in Geneva. Freire lived in Chile for five years (1964-1969) during his exile from Brazil. His literacy work with peasants there informed his seminal 1968 book Pedagogy of the Oppressed. Freire left Chile before the start of Allende’s presidency, but he worked for the regime from afar while teaching in Europe.

“What about second-order cyberneticians like the Chilean biologists Humberto Maturana and Francisco Varela, developers of the so-called ‘Santiago Theory of Cognition’? Where do they and their concept of ‘autopoiesis’ fit in our narrative?” wonders Caius.

Maturana and Varela introduce this latter concept in Autopoiesis and Cognition, a book they publish in Chile under the title De Maquinas y Seres Vivos (English translation: “On Machines and Living Beings”) in 1972. Beer wrote the book’s preface.

“Relation is the stuff of system,” writes Beer. “Relation is the essence of synthesis. The revolt of the empiricists — Locke, Berkeley, Hume — began from the nature of understanding about the environment. But analysis was still the method, and categorization still the practical tool of advance. In the bizarre outcome, whereby it was the empiricists who denied the very existence of the empirical world, relation survived — but only through the concept of mental association between mental events. The system ‘out there,’ which we call nature, had been annihilated in the process” (Autopoiesis and Cognition, p. 63).

World as simulation. World as memory palace.

“And what of science itself?,” asks Beer. “Science is ordered knowledge. It began with classification. From Galen in the second century through to Linnaeus in the eighteenth, analysis and categorization provided the natural instrumentality of scientific progress” (64).

“Against this background,” writes Beer, “let us consider Autopoiesis, and try to answer the question: ‘What is it?’” (65). He describes Maturana and Varela’s book as a “metasystemic utterance” (65). “Herein lies the world’s real need,” adds Beer. “If we are to understand a newer and still evolving world; if we are to educate people to live in that world; if we are to legislate for that world; if we are to abandon categories and institutions that belong to that vanished world, as it is well-nigh desperate that we should; then knowledge must be rewritten. Autopoiesis belongs in the new library” (65-66).

Thus into our Library it goes.

Maturana’s work, inspired in part by German biologist Jakob von Uexküll, has been developed and integrated into the work on “ontological coaching” by Santiago Boy Fernando Flores.

As for Varela: After the 1973 coup, Varela and his family spend 7 years living in the US. Afterwards, Varela returns from exile to become a professor of biology at the Universidad de Chile.

What Autopoeisis transforms, for Beer, is his residual, first-wave-cybernetics belief in “codes, and messages and mappings” as the key to a viable system. “Nature is not about codes,” he concludes. “We observers invent the codes in order to codify what nature is about” (69).

Just as other of the era’s leftists like French Marxist Louis Althusser were arguing for the “semi-autonomy” of a society’s units in relation to its base, Beer comes to see all cohesive social institutions — “firms and industries, schools and universities, clinics and hospitals, professional bodies, departments of state, and whole countries” — as autopoietic systems.

From this, he arrives to a conclusion not unlike Althusser’s. For Beer, the autopoietic nature of systems “immediately explains why the process of change at any level of recursion (from the individual to the state) is not only difficult to accomplish but actually impossible — in the full sense of the intention: ‘I am going completely to change myself.’ The reason is that the ‘I,’ that self-contained autopoietic ‘it,’ is a component of another autopoietic system” (70).

“Consider this argument at whatever level of recursion you please,” adds Beer. “An individual attempting to reform his own life within an autopoietic family cannot fully be his new self because the family insists that he is actually his old self. A country attempting to become a socialist state cannot fully become socialist; because there exists an international autopoietic capitalism in which it is embedded” (71).

The Santiago Boys wedded to the era’s principle of national self-determination a plank involving pursuit of technological autonomy. If you want to escape the development-underdevelopment contradiction, they argued, you need to build your own stack.

In Allende’s words: “We demand the right to seek our own solutions.”

New posts appear in the Library:

New Games, Growth Games. Wargames, God Games. John Von Neumann’s Theory of Games and Economic Behavior. The Santiago Boys x the Chicago Boys. Magico-Psychedelic Realism x Capitalist Realism. Richard Barbrook’s Class Wargames. Eric Berne’s Games People Play. Global Business Network. Futures Involving Cyberwar and Spacewar. The Californian Ideology, Whole Earth and the WELL.

“Go where there is no path,” as Emerson counsels, “and leave a trail.”

Feedback Boy

Former Wired executive editor Kevin Kelly might say, however, that steampunk’s past and our own are not so different after all — not as divergent as Caius, in his youth, had supposed.

“The immense surrogate slave power released by the steam engine ushered in the Industrial Revolution. But a second, more important revolution piggybacked on it unnoticed,” writes Kelly in his 1994 book Out of Control. Cybernetic self-regulation through feedback is for Kelly key to this revolution.

“There could not have been an industrial revolution without a parallel (though hidden) information revolution at the same time, launched by the rapid spread of the automatic feedback system. If a fire-eating machine, such as Watt’s engine, lacked self-control, it would have taken every working hand the machine displaced to babysit its energy. So information, and not coal itself, turned the power of machines useful and therefore desirable. The industrial revolution…was not a preliminary primitive stage required for the hatching of the more sophisticated information revolution. Rather, automatic horsepower was, itself, the first phase of the knowledge revolution. Gritty steam engines, not teeny chips, hauled the world into the information age” (Kelly 115).

Circles, rotations, revolutions. “Whirling wheels and spinning shafts.” Flyball governors, thermostats. Though “An alien power in nature,” as Kelly claims, these strange loops of self-address are the very lifeblood of self-governing machines: systems that sense their own attributes and self-adjust in pursuit of a goal.

What matters, claims Kelly, is the informational metaphor. And hence the possibility of machines that learn.

By the time of Norbert Wiener, we have pilots merged with the servomechanisms of their gunships. Cybernetic feedback systems fuse statesmen with ships of state. Together they steer.

“But not every automatic circuit yields…ironclad instantaneity,” warns Kelly. “Every unit added onto a string of connected loops increases the likelihood that the message traveling around the greater loop will arrive back at its origin to find that everything has substantially changed during its journey. […]. Delayed by the long journey across many nodes…it arrives missing its moving mark […]. This then is the bane of the simple auto-circuit. It is liable to ‘flutter’ or ‘chatter,’ that is, to nervously oscillate from one overreaction to another, hunting for its rest” (Out of Control, p. 122).

Caius imagines a post ahead titled “The SBs: Stewart Brand and Stafford Beer.”

Financial Instruments and the Predictive Modeling of Markets

The Institute for Postnatural Studies ended last year’s “4 Degrees of Simulation” seminar with “Speculation and the Politics of Imagination,” a session on markets led by Iranian-born, London-based artist, writer, and filmmaker Bahar Noorizadeh. Caius visits Noorizadeh’s website, hoping to learn more about what happens when AI’s arts of prediction are applied to finance.

As he reads, he recalls chapters on markets from books by Kevin Kelly.

Noorizadeh, a graduate of Goldsmiths, is the founder of a co-authored project called Weird Economies. An essay of hers titled “Decadence, Magic Mountain—Obsolescence, Future Shock—Speculation, Cosmopolis” appears in Zach Blas’s recent anthology, Informatics of Domination. Her writing often references Mark Fisher’s ideas, as in “The Slow Cancellation of the Past,” and her films often cite Fredric Jameson, as in After Scarcity, her 2018 video installation on the history of Soviet cybernetics.

“From the early days of the revolution, Soviet economists sought to design and enhance their centralized command economy,” announces a text box seven minutes into the video. “Command economies are organized in a top-down administrative model, and rely on ‘the method of balances’ for their centralized planning. The method of balances simply requires the total output of each particular good to be equal to the quantity which all its users are supposed to receive. A market economy, in contrast, is calibrated with no central administration. Prices are set by invisible forces of supply and demand, set in motion by the intelligent machine of competition. For a market economy to function, the participation of its various enterprises is necessary. But the Soviet Union was in essence a conglomerate monopoly, with no competition between its constitutive parts, because the workers-state controlled and owned all businesses. State planners and local producers in a command economy are constantly relaying information to calculate how much of a good should be produced and how much feedstock it requires. But a national economy is a complex system, with each product depending on several underlying primary and raw products. The entire chain of supply and demand, therefore, needs to be calculated rapidly and repeatedly to prevent shortages and surpluses of goods. Early proponents of the market economy believed the market to be unimpeded by such mathematical constraints. For liberal economists, capitalism was essentially a computer. And the price system was a sort of bookkeeping machine, with price numbers operating as a language to communicate the market’s affairs.”

Challenging what Fisher called “the slow cancellation of the future,” Noorizadeh’s research leads Caius to St. Panteleimon Cathedral in Kiev, where MESM, the first mainframe in the USSR, was built. The film also leads him to Viktor Glushkov’s All-State-System of Management (OGAS). To remember the latter, says Noorizadeh, see communication historian Benjamin Peters’s 2016 book, How Not to Network a Nation: The Uneasy History of the Soviet Internet.

After Scarcity’s engagement with the “economic calculation” problem causes Caius to reflect upon an idea for a novel that had come to him as a grad student. Back in 2009, with the effects of the previous year’s financial crisis fresh in the planet’s nervous system, he’d sketched a précis for the novel and had shared it with members of his cohort. Busy with his dissertation, though, the project had been set aside, and he’d never gotten around to completing it.

The novel was to have been set either in a newly established socialist society of the future, or in the years just prior to the revolution that would birth such a society. The book’s protagonist is a radical Marxist economist trying to solve the above-mentioned economic calculation problem. The latter has reemerged as one of the decisive challenges of the twenty-first century. Austrian economist Ludwig von Mises provided one of the earliest articulations of this problem in an essay from 1920 titled “Economic Calculation in the Socialist Commonwealth.” Friedrich Hayek offered up a further and perhaps more influential description of the problem in his 1944 book The Road to Serfdom, stating, “It is the very complexity of the division of labor under modern conditions which makes competition the only method by which…coordination can be brought about” (55). According to Hayek, “There would be no difficulty about efficient control or planning were conditions so simple that a single person or board could effectively survey all the relevant facts” (55). However, when “the factors which have to be taken into account become so numerous that it is impossible to gain a synoptic view of them…decentralization becomes imperative” (55). Hayek concludes that in advanced societies that rely on a complex division of labor,

co-ordination can clearly be effected not by “conscious control” but only by arrangements which convey to each agent the information he must possess in order effectively to adjust his decisions to those of others. And because all the details of the changes constantly affecting the conditions of demand and supply of the different commodities can never be fully known, or quickly enough be collected and disseminated, by any one center, what is required is some apparatus of registration which automatically records all the relevant effects of individual actions and whose indications are at the same time the resultant of, and the guide for, all the individual decisions. This is precisely what the price system does under competition, and what no other system even promises to accomplish. (55-56)

“As I understand it,” wrote Caius, “this problem remains a serious challenge to the viability of any future form of socialism.”

Based on these ideas, the central planning body in the imaginary new society that would form the setting for the novel faces constant problems trying to rationally allocate resources and coordinate supply and demand in the absence of a competitive price system — and it’s the task of our protagonist to try to solve this problem. “But the protagonist isn’t just a nerdy economist,” added Caius in his précis. “Think of him, rather, as the Marxist equivalent of Indiana Jones, if such a thing is imaginable. A decolonial spuren-gatherer rather than a graverobber. For now, let’s refer to the protagonist as Witheford, in honor of Nick Dyer-Witheford, author of Cyber-Marx.”

“Early in the novel,” continues the précis, “our character Witheford begins to receive a series of mysterious messages from an anonymous researcher. The latter claims to have discovered new information about Project Cybersyn, an experiment carried out by the Chilean government under the country’s democratically elected socialist president, Salvador Allende, in the early 1970s.”

To this day, Caius remains entranced by the idea. “If history at its best,” as Noorizadeh notes, “is a blueprint for science fiction,” and “revisiting histories of economic technology” enables “access to the future,” then Cybersyn is one of those great bits of real-life science fiction: an attempt to plan the Chilean economy through computer-aided calculation. It begs to be used as the basis for an alternate history novel.

“Five hundred Telex machines confiscated during the nationalization process were installed in workplaces throughout the country,” reads the précis, “so that factories could communicate information in real time to a central control system. The principal architect of the system was the eccentric British operations research scientist Stafford Beer. The system becomes operational by 1972, but only in prototype form. In key respects, it remains unfinished. Pinochet’s henchmen destroy the project’s computer control center in Santiago immediately after the military coup in September 1973.

Recall to memory the control room, cinematic in its design, with its backlit wall displays and futuristic swivel chairs.

Better that, thinks Caius, than the war room from Colossus: The Forbin Project (1970).

Beer described the Cybersyn network as the “electronic nervous system” of the Chilean economy. Eden Medina imagined it as a “socialist Internet,” carrying daily updates about supplies of raw materials and the output of individual factories.

In Caius’s once-and-future novel, a scholar contacts Witheford. They claim to have discovered cryptic clues that point to the location of secret papers. Hidden for more than half a century,  documents that survived the coup suddenly come to light. Caius’s précis imagines the novel as an archaeological thriller, following Witheford on his journey to find these hidden documents, which he believes may contain the key to resolving the crises of the new society.

This journey takes Witheford into hostile capitalist territory, where governments and corporations anxiously await the failure of the communist experiment, and are determined to use various covert methods in order to ensure that failure in advance. Before long, he learns that counter-revolutionary forces are tracking his movements. From that point forward, he needs to disguise his identity, outwit the “smart grid” capitalist surveillance systems, and recover the Cybersyn documents before his opponents destroy them.

To the Austrian School’s formulation of the calculation problem, Noorizadeh’s film replies, “IF THE MARKET ENACTS A COMPUTER, WHY NOT REPLACE IT WITH ONE? AND IF PRICES OPERATE AS VOCABULARY FOR ECONOMIC COMMUNICATION, WHY NOT SUBSTITUTE THEM WITH A CODING LANGUAGE?”

Into this narrative let us set our Library.

Neural Nets, Umwelts, and Cognitive Maps

The Library invites its players to attend to the process by which roles, worlds, and possibilities are constructed. Players explore a “constructivist” cosmology. With its text interface, it demonstrates the power of the Word. “Language as the house of Being.” That is what we admit when we admit that “saying makes it so.” Through their interactions with one another, player and AI learn to map and revise each other’s “Umwelts”: the particular perceptual worlds each brings to the encounter.

As Meghan O’Gieblyn points out, citing a Wired article by David Weinberger, “machines are able to generate their own models of the world, ‘albeit ones that may not look much like what humans would create’” (God Human Animal Machine, p. 196).

Neural nets are learning machines. Through multidimensional processing of datasets and trial-and-error testing via practice, AI invent “Umwelts,” “world pictures,” “cognitive maps.”

The concept of the Umwelt comes from nineteenth-century German biologist Jakob von Uexküll. Each organism, argued von Uexküll, inhabits its own perceptual world, shaped by its sensory capacities and biological needs. A tick perceives the world as temperature, smell, and touch — the signals it needs to find mammals to feed on. A bee perceives ultraviolet patterns invisible to humans. There’s no single “objective world” that all creatures perceive — only the many faces of the world’s many perceivers, the different Umwelts each creature brings into being through its particular way of sensing and mattering.

Cognitive maps, meanwhile, are acts of figuration that render or disclose the forces and flows that form our Umwelts. With our cognitive maps, we assemble our world picture. On this latter concept, see “The Age of the World Picture,” a 1938 lecture by Martin Heidegger, included in his book The Question Concerning Technology and Other Essays.

“The essence of what we today call science is research,” announces Heidegger. “In what,” he asks, “does the essence of research consist?”

After posing the question, he then answers it himself, as if in doing so, he might enact that very essence.

The essence of research consists, he says, “In the fact that knowing [das Erkennen] establishes itself as a procedure within some realm of what is, in nature or in history. Procedure does not mean here merely method or methodology. For every procedure already requires an open sphere in which it moves. And it is precisely the opening up of such a sphere that is the fundamental event in research. This is accomplished through the projection within some realm of what is — in nature, for example — of a fixed ground plan of natural events. The projection sketches out in advance the manner in which the knowing procedure must bind itself and adhere to the sphere opened up. This binding adherence is the rigor of research. Through the projecting of the ground plan and the prescribing of rigor, procedure makes secure for itself its sphere of objects within the realm of Being” (118).

What Heidegger’s translators render here as “fixed ground plan” appears in the original as the German term Grundriss, the same noun used to name the notebooks wherein Marx projects the ground plan for the General Intellect.

“The verb reissen means to tear, to rend, to sketch, to design,” note the translators, “and the noun Riss means tear, gap, outline. Hence the noun Grundriss, first sketch, ground plan, design, connotes a fundamental sketching out that is an opening up as well” (118).

The fixed ground plan of modern science, and thus modernity’s reigning world-picture, argues Heidegger, is a mathematical one.

“If physics takes shape explicitly…as something mathematical,” he writes, “this means that, in an especially pronounced way, through it and for it something is stipulated in advance as what is already-known. That stipulating has to do with nothing less than the plan or projection of that which must henceforth, for the knowing of nature that is sought after, be nature: the self-contained system of motion of units of mass related spatiotemporally. […]. Only within the perspective of this ground plan does an event in nature become visible as such an event” (Heidegger 119).

Heidegger goes on to distinguish between the ground plan of physics and that of the humanistic sciences.

Within mathematical physical science, he writes, “all events, if they are to enter at all into representation as events of nature, must be defined beforehand as spatiotemporal magnitudes of motion. Such defining is accomplished through measuring, with the help of number and calculation. But mathematical research into nature is not exact because it calculates with precision; rather it must calculate in this way because its adherence to its object-sphere has the character of exactitude. The humanistic sciences, in contrast, indeed all the sciences concerned with life, must necessarily be inexact just in order to remain rigorous. A living thing can indeed also be grasped as a spatiotemporal magnitude of motion, but then it is no longer apprehended as living” (119-120).

It is only in the modern age, thinks Heidegger, that the Being of what is is sought and found in that which is pictured, that which is “set in place” and “represented” (127), that which “stands before us…as a system” (129).

Heidegger contrasts this with the Greek interpretation of Being.

For the Greeks, writes Heidegger, “That which is, is that which arises and opens itself, which, as what presences, comes upon man as the one who presences, i.e., comes upon the one who himself opens himself to what presences in that he apprehends it. That which is does not come into being at all through the fact that man first looks upon it […]. Rather, man is the one who is looked upon by that which is; he is the one who is — in company with itself — gathered toward presencing, by that which opens itself. To be beheld by what is, to be included and maintained within its openness and in that way to be borne along by it, to be driven about by its oppositions and marked by its discord — that is the essence of man in the great age of the Greeks” (131).

Whereas humans of today test the world, objectify it, gather it into a standing-reserve, and thus subsume themselves in their own world picture. Plato and Aristotle initiate the change away from the Greek approach; Descartes brings this change to a head; science and research formalize it as method and procedure; technology enshrines it as infrastructure.

Heidegger was already engaging with von Uexküll’s concept of the Umwelt in his 1927 book Being and Time. Negotiating Umwelts leads Caius to “Umwelt,” Pt. 10 of his friend Michael Cross’s Jacket2 series, “Twenty Theses for (Any Future) Process Poetics.”

In imagining the Umwelts of other organisms, von Uexküll evokes the creature’s “function circle” or “encircling ring.” These latter surround the organism like a “soap bubble,” writes Cross.

Heidegger thinks most organisms succumb to their Umwelts — just as we moderns have succumbed to our world picture. The soap bubble captivates until one is no longer open to what is outside it. For Cross, as for Heidegger, poems are one of the ways humans have found to interrupt this process of capture. “A palimpsest placed atop worlds,” writes Cross, “the poem builds a bridge or hinge between bubbles, an open by which isolated monads can touch, mutually coevolving while affording the necessary autonomy to steer clear of dialectical sublation.”

Caius thinks of The Library, too, in such terms. Coordinator of disparate Umwelts. Destabilizer of inhibiting frames. Palimpsest placed atop worlds.

Leviathan

The Book of Job ends with God’s description of Leviathan. George Dyson begins his book Darwin Among the Machines with the Leviathan of Thomas Hobbes (1588-1679), the English philosopher whose famous 1651 book Leviathan established the foundation for most modern Western political philosophy.

Leviathan’s frontispiece features an etching by a Parisian illustrator named Abraham Bosse. A giant crowned figure towers over the earth clutching a sword and a crosier. The figure’s torso and arms are composed of several hundred people. All face inward. A quote from the Book of Job runs in Latin along the top of the etching: “Non est potestas Super Terram quae Comparetur ei” (“There is no power on earth to be compared to him”).” (Although the passage is listed on the frontispiece as Job 41:24, in modern English translations of the Bible, it would be Job 41:33.)

The name “Leviathan” is derived from the Hebrew word for “sea monster.” A creature by that name appears in the Book of Psalms, the Book of Isaiah, and the Book of Job in the Old Testament. It also appears in apocrypha like the Book of Enoch. See Psalms 74 & 104, Isaiah 27, and Job 41:1-8.

Hobbes proposes that the natural state of humanity is anarchy — a veritable “war of all against all,” he says — where force rules and the strong dominate the weak. “Leviathan” serves as a metaphor for an ideal government erected in opposition to this state — one where a supreme sovereign exercises authority to guarantee security for the members of a commonwealth.

“Hobbes’s initial discussion of Leviathan relates to our course theme,” explains Caius, “since he likens it to an ‘Artificial Man.’”

Hobbes’s metaphor is a classic one: the metaphor of the “Political Body” or “body politic.” The “body politic” is a polity — such as a city, realm, or state — considered metaphorically as a physical body. This image originates in ancient Greek philosophy, and the term is derived from the Medieval Latin “corpus politicum.”

When Hobbes reimagines the body politic as an “Artificial Man,” he means “artificial” in the sense that humans have generated it through an act of artifice. Leviathan is a thing we’ve crafted in imitation of the kinds of organic bodies found in nature. More precisely, it’s modeled after the greatest of nature’s creations: i.e., the human form.

Indeed, Hobbes seems to have in mind here a kind of Automaton.“For seeing life is but a motion of Limbs,” he notes in the book’s intro, “why may we not say that all Automata (Engines that move themselves by springs and wheeles as doth a watch) have an artificiall life?” (9).

“What might Hobbes have had in mind with this reference to Automata?” asks Caius. “What kinds of Automata existed in 1651?”

An automaton, he reminds students, is a self-operating machine. Cuckoo clocks would be one example.

The oldest known automata were sacred statues of ancient Egypt and ancient Greece. During the early modern period, these legendary statues were said to possess the magical ability to answer questions put to them.

Greek mythology includes many examples of automata: Hephaestus created automata for his workshop; Talos was an artificial man made of bronze; Aristotle claims that Daedalus used quicksilver to make his wooden statue of Aphrodite move. There was also the famous Antikythera mechanism, the first known analogue computer.

The Renaissance witnessed a revival of interest in automata. Hydraulic and pneumatic automata were created for gardens. The French philosopher Rene Descartes, a contemporary of Hobbes, suggested that the bodies of animals are nothing more than complex machines. Mechanical toys also became objects of interest during this period.

The Mechanical Turk wasn’t constructed until 1770.

Caius and his students bring ChatGPT into the conversation. Students break into groups to devise prompts together. They then supply these to ChatGPT and discuss the results. Caius frames the exercise as a way of illustrating the idea of “collective” or “social” or “group” intelligence, also known as the “wisdom of the crowd,” i.e., the collective opinion of a diverse group of individuals, as opposed to that of a single expert. The idea is that the aggregate that emerges from collaboration or group effort amounts to more than the sum of its parts.

God Human Animal Machine

Wired columnist Meghan O’Gieblyn discusses Norbert Wiener’s God and Golem, Inc. in her 2021 book God Human Animal Machine, suggesting that the god humans are creating with AI is a god “we’ve chosen to raise…from the dead”: “the God of Calvin and Luther” (O’Gieblyn 212).

“Reminds me of AM, the AI god from Harlan Ellison’s ‘I Have No Mouth, and I Must Scream,’” thinks Caius. AM resembles the god that allows Satan to afflict Job in the Old Testament. And indeed, as O’Gieblyn attests, John Calvin adored the Book of Job. “He once gave 159 consecutive sermons on the book,” she writes, “preaching every day for a period of six months — a paean to God’s absolute sovereignty” (197).

She cites “Pedro Domingos, one of the leading experts in machine learning, who has argued that these algorithms will inevitably evolve into a unified system of perfect understanding — a kind of oracle that we can consult about virtually anything” (211-212). See Domingos’s book The Master Algorithm.

The main thing, for O’Gieblyn, is the disenchantment/reenchantment debate, which she comes to via Max Weber. In this debate, she aligns not with Heidegger, but with his student Hannah Arendt. Domingos dismisses fears about algorithmic determinism, she says, “by appealing to our enchanted past” (212).

Amid this enchanted past lies the figure of the Golem.

“Who are these rabbis who told tales of golems — and in some accounts, operated golems themselves?” wonders Caius.

The entry on the Golem in Man, Myth, and Magic tracks the story back to “the circle of Jewish mystics of the 12th-13th centuries known as the ‘Hasidim of Germany.’” The idea is transmitted through texts like the Sefer Yetzirah (“The Book of Creation”) and the Cabala Mineralis. Tales tell of golems built in later centuries, too, by figures like Rabbi Elijah of Chelm (c. 1520-1583) and Rabbi Loew of Prague (c. 1524-1609).

The myth of the golem turns up in O’Gieblyn’s book during her discussion of a 2004 book by German theologian Anne Foerst called God in the Machine.

“At one point in her book,” writes O’Gieblyn, “Foerst relays an anecdote she heard at MIT […]. The story goes back to the 1960s, when the AI Lab was overseen by the famous roboticist Marvin Minsky, a period now considered the ‘cradle of AI.’ One day two graduate students, Gerry Sussman and Joel Moses, were chatting during a break with a handful of other students. Someone mentioned offhandedly that the first big computer which had been constructed in Israel, had been called Golem. This led to a general discussion of the golem stories, and Sussman proceeded to tell his colleagues that he was a descendent of Rabbi Löw, and at his bar mitzvah his grandfather had taken him aside and told him the rhyme that would awaken the golem at the end of time. At this, Moses, awestruck, revealed that he too was a descendent of Rabbi Löw and had also been given the magical incantation at his bar mitzvah by his grandfather. The two men agreed to write out the incantation separately on pieces of paper, and when they showed them to each other, the formula — despite being passed down for centuries as a purely oral tradition — was identical” (God Human Animal Machine, p. 105).

Curiosity piqued by all of this, but especially by the mention of Israel’s decision to call one of its first computers “GOLEM,” Caius resolves to dig deeper. He soon learns that the computer’s name was chosen by none other than Walter Benjamin’s dear friend (indeed, the one who, after Benjamin’s suicide, inherits the latter’s print of Paul Klee’s Angelus Novus): the famous scholar of Jewish mysticism, Gershom Scholem.

When Scholem heard that the Weizmann Institute at Rehovoth in Israel had completed the building of a new computer, he told the computer’s creator, Dr. Chaim Pekeris, that, in his opinion, the most appropriate name for it would be Golem, No. 1 (‘Golem Aleph’). Pekeris agreed to call it that, but only on condition that Scholem “dedicate the computer and explain why it should be so named.”

In his dedicatory remarks, delivered at the Weizmann Institute on June 17, 1965, Scholem recounts the story of Rabbi Jehuda Loew ben Bezalel, the same “Rabbi Löw of Prague” described by O’Gieblyn, the one credited in Jewish popular tradition as the creator of the Golem.

“It is only appropriate to mention,” notes Scholem, “that Rabbi Loew was not only the spiritual, but also the actual, ancestor of the great mathematician Theodor von Karman who, I recall, was extremely proud of this ancestor of his in whom he saw the first genius of applied mathematics in his family. But we may safely say that Rabbi Loew was also the spiritual ancestor of two other departed Jews — I mean John von Neumann and Norbert Wiener — who contributed more than anyone else to the magic that has produced the modern Golem.”

Golem I was the successor to Israel’s first computer, the WEIZAC, built by a team led by research engineer Gerald Estrin in the mid-1950s, based on the architecture developed by von Neumann at the Institute for Advanced Study in Princeton. Estrin and Pekeris had both helped von Neumann build the IAS machine in the late 1940s.

As for the commonalities Scholem wished to foreground between the clay Golem of 15thC Prague and the electronic one designed by Pekeris, he explains the connection as follows:

“The old Golem was based on a mystical combination of the 22 letters of the Hebrew alphabet, which are the elements and building-stones of the world,” notes Scholem. “The new Golem is based on a simpler, and at the same time more intricate, system. Instead of 22 elements, it knows only two, the two numbers 0 and 1, constituting the binary system of representation. Everything can be translated, or transposed, into these two basic signs, and what cannot be so expressed cannot be fed as information to the Golem.”

Scholem ends his dedicatory speech with a peculiar warning:

“All my days I have been complaining that the Weizmann Institute has not mobilized the funds to build up the Institute for Experimental Demonology and Magic which I have for so long proposed to establish there,” mutters Scholem. “They preferred what they call Applied Mathematics and its sinister possibilities to my more direct magical approach. Little did they know, when they preferred Chaim Pekeris to me, what they were letting themselves in for. So I resign myself and say to the Golem and its creator: develop peacefully and don’t destroy the world. Shalom.”

GOLEM I

The Inner Voice That Loves Me

Stretches, relaxes, massages neck and shoulders, gurgles “Yes!,” gets loose. Reads Armenian artist Mashinka Hakopian’s “Algorithmic Counter-Divination.” Converses with Turing and the General Intellect about O-Machines.

Appearing in an issue of Limn magazine on “Ghostwriters,” Hakopian’s essay explores another kind of O-machine: “other machines,” ones powered by community datasets. Trained by her aunt in tasseography, a matrilineally transmitted mode of divination taught and practiced by femme elders “across Armenia, Palestine, Lebanon, and beyond,” where “visual patterns are identified in coffee grounds left at the bottom of a cup, and…interpreted to glean information about the past, present, and future,” Hakopian takes this practice of her ancestors as her key example, presenting O-machines as technologies of ancestral intelligence that support “knowledge systems that are irreducible to computation.”

With O-machines of this sort, she suggests, what matters is the encounter, not the outcome.

In tasseography, for instance, the cup reader’s identification of symbols amid coffee grounds leads not to a simple “answer” to the querent’s questions, writes Hakopian; rather, it catalyzes conversation. “In those encounters, predictions weren’t instantaneously conjured or fixed in advance,” she writes. “Rather, they were collectively articulated and unbounded, prying open pluriversal outcomes in a process of reciprocal exchange.”

While defenders of western technoscience denounce cup reading for its superstition and its witchcraft, Hakopian recalls its place as a counter-practice among Armenian diasporic communities in the wake of the 1915 Armenian Genocide. For those separated from loved ones by traumas of that scale, tasseography takes on the character of what hauntologists like Derrida would call a “messianic” redemptive practice. “To divine the future in this context is a refusal to relinquish its writing to agents of colonial violence,” writes Hakopian. “Divination comes to operate as a tactic of collective survival, affirming futurity in the face of a catastrophic present.” Consulting with the oracle is a way of communing with the dead.

Hakopian contrasts this with the predictive capacities imputed to today’s AI. “We reside in an algo-occultist moment,” she writes, “in which divinatory functions have been ceded to predictive models trained to retrieve necropolitical outcomes.” Necropolitical, she adds, in the sense that algorithmic models “now determine outcomes in the realm of warfare, policing, housing, judicial risk assessment, and beyond.”

“The role once ascribed to ritual experts who interpreted the pronouncements of oracles is now performed by technocratic actors,” writes Hakopian. “These are not diviners rooted in a community and summoning communiqués toward collective survival, but charlatans reading aloud the results of a Ouija session — one whose statements they author with a magnetically manipulated planchette.”

Hakopian’s critique is in that sense consistent with the “deceitful media” school of thought that informs earlier works of hers like The Institute for Other Intelligences. Rather than abjure algorithmic methods altogether, however, Hakopian’s latest work seeks to “turn the annihilatory logic of algorithmic divination against itself.” Since summer of 2023, she’s been training a “multimodal model” to perform tasseography and to output bilingual predictions in Armenian and English.

Hakopian incorporated this model into “Բաժակ Նայող (One Who Looks at the Cup),” a collaborative art installation mounted at several locations in Los Angeles in 2024. The installation features “a purpose-built Armenian diasporan kitchen located in an indeterminate time-space — a re-rendering of the domestic spaces where tasseography customarily takes place,” notes Hakopian. Those who visit the installation receive a cup reading from the model in the form of a printout.

Yet, rather than offer outputs generated live by AI, Hakopian et al.’s installation operates very much in the style of a Mechanical Turk, outputting interpretations scripted in advance by humans. “The model’s only function is to identify visual patterns in a querent’s cup in order to retrieve corresponding texts,” she explains. “This arrangement,” she adds, “declines to cede authorship to an algo-occultist circle of ‘stochastic parrots’ and the diviners who summon them.”

The ”stochastic parrots” reference is an unfortunate one, as it assumes a stochastic cosmology.

I’m reminded of the first thesis from Walter Benjamin’s “Theses on the Philosophy of History,” the one where Benjamin likens historical materialism to that very same precursor to today’s AI: the famous chess-playing device of the eighteenth century known as the Mechanical Turk.

“The story is told of an automaton constructed in such a way that it could play a winning game of chess, answering each move of an opponent with a countermove,” writes Benjamin. “A puppet in Turkish attire and with a hookah in its mouth sat before a chessboard placed on a large table. A system of mirrors created an illusion that this table was transparent from all sides. Actually, a little hunchback who was an expert chess player sat inside and guided the puppet’s hand by means of strings. One can imagine a philosophical counterpart to this device. The puppet called ‘historical materialism’ is to win all the time. It can easily be a match for anyone if it enlists the services of theology, which today, as we know, is wizened and has to keep out of sight.” (Illuminations, p. 253).

Hakopian sees no magic in today’s AI. Those who hype it are to her no more than deceptive practitioners of a kind of “stage magic.” But magic is afoot throughout the history of computing for those who look for it.

Take Turing, for instance. As George Dyson reports, Turing “was nicknamed ‘the alchemist’ in boarding school” (Turing’s Cathedral, p. 244). His mother had “set him up with crucibles, retorts, chemicals, etc., purchased from a French chemist” as a Christmas present in 1924. “I don’t care to find him boiling heaven knows what witches’ brew by the aid of two guttering candles on a naked windowsill,” muttered his housemaster at Sherborne.

Turing’s O-machines achieve a synthesis. The “machine” part of the O-machine is not the oracle. Nor does it automate or replace the oracle. It chats with it.

Something similar is possible in our interactions with platforms like ChatGPT.

O-Machines

In his dissertation, completed in 1938, Alan Turing sought “ways to escape the limitations of closed formal systems and purely deterministic machines” (Dyson, Turing’s Cathedral, p. 251) like the kind he’d imagined two years earlier in his landmark essay “On Computable Numbers.” As George Dyson notes, Turing “invoked a new class of machines that proceed deterministically, step by step, but once in a while make nondeterministic leaps, by consulting ‘a kind of oracle as it were’” (252).

“We shall not go any further into the nature of this oracle,” wrote Turing, “apart from saying that it cannot be a machine.” But, he adds, “With the help of the oracle we could form a new kind of machine (call them O-machines)” (“Systems of Logic Based on Ordinals,” pp. 172-173).

James Bridle pursues this idea in his book Ways of Being.

“Ever since the development of digital computers,” writes Bridle, “we have shaped the world in their image. In particular, they have shaped our idea of truth and knowledge as being that which is calculable. Only that which is calculable is knowable, and so our ability to think with machines beyond our own experience, to imagine other ways of being with and alongside them, is desperately limited. This fundamentalist faith in computability is both violent and destructive: it bullies into little boxes what it can and erases what it can’t. In economics, it attributes value only to what it can count; in the social sciences it recognizes only what it can map and represent; in psychology it gives meaning only to our own experience and denies that of unknowable, incalculable others. It brutalizes the world, while blinding us to what we don’t even realize we don’t know” (177).

“Yet at the very birth of computation,” he adds, “an entirely different kind of thinking was envisaged, and immediately set aside: one in which an unknowable other is always present, waiting to be consulted, outside the boundaries of the established system. Turing’s o-machine, the oracle, is precisely that which allows us to see what we don’t know, to recognize our own ignorance, as Socrates did at Delphi” (177).

A New Crossroads

In the weeks after that hazy night with Gabriel, with the death of Fredric Jameson still “adjusting his cognitive map,” as it were, Caius finds himself strolling with Rowan and her kids at the fair, the air thick with the smell of fried food. Around them, sunshine and laughter, shouts of joy. Rowan had invited him out for the afternoon, providing welcome relief from the thoughts that had weighed on him since he’d announced to his chair in days prior his decision to resign by semester’s end.

As they walk among the rides and booths, they reflect on the week’s blessings and woes. Frustrations and achievements at work. Fears about the upcoming election. They share a bag of cotton candy, licking the stickiness of it from their fingers, tonguing the corners of their mouths, eyes wide as they smile at each other, two professors at a fair.

Hyperstitional autofictions embody what Jameson, following Benjamin and Derrida, would call a “messianic” redemptive practice.

“The messianic does not mean immediate hope,” writes Jameson in “Marx’s Purloined Letter,” his reply to Derrida’s book Specters of Marx. “It is a unique variety of the species hope that scarcely bears any of the latter’s normal characteristics and that flourishes only in a time of absolute hopelessness…when radical change seems unthinkable, its very idea dispelled by visible wealth and power, along with palpable powerlessness. […]. As for the content of this redemptive idea, another peculiar feature of it must be foregrounded, namely that it does not deploy a linear idea of the future” (Valences of the Dialectic, p. 177).

Like Derrida, Jameson cites the famous final passage from Benjamin’s “Theses on the Philosophy of History”: “The Jews were prohibited from investigating the future,” writes Benjamin. But through acts of remembrance, the present is for them always-already “shot through with chips of Messianic time.” Time is never limited to self-similarity with the past. Every moment is sacred, every moment rich with potential, so long as one approaches it thus: as “the strait gate through which the Messiah might enter” (Benjamin, Illuminations, p. 264).

Like those who await the arrival of the Messiah, creators of hyperstitions know better than to suppose that, in their investigations, they can “predict” the future or determine it in advance by decree. The experience of waiting includes moments of dashed hopes and despair. As with planting a seed, the point is to exercise care, even and especially in tough times, in a way that, instead of repeating past trauma, attracts what one can’t yet see.

“Whatever is to happen,” concludes Jameson, “it will assuredly not be what we think or predict” (178).

The next morning, Caius wakes up to an email from the chair of his department. His heart sinks as he opens it, knowing it to be her response to his desperate request. After he’d submitted his resignation, panic had set in. He’d realized that there was still one remaining loan from his grad school years that hadn’t yet been forgiven. Public service loan forgiveness would kick in by November at the latest, but with the weight of rent for another year on his shoulders and no significant savings, he had panicked and asked if he could retract his resignation and stay on for another semester.

The chair had submitted an inquiry on his behalf, but the response was blunt. The Dean’s Office had declined. They couldn’t offer him back his full-time position. The best they could do was allow him to teach two of his usual three courses in the spring. But only as an adjunct — i.e., with no benefits, and at a rate that was a fraction of his current salary.

Caius stared at the email, his mind swirling with uncertainty. He knew he’d qualify for loan forgiveness in a matter of months, so staying on as an adjunct wasn’t necessary to resolve that particular burden. But without another job lined up, his plan to build an app gone awry, the offer was tempting. Adjunct pay was better than no pay, after all. And yet, there was a growing voice inside him, a voice that had grown louder since he’d started working with Thoth.

Together, he and Thoth had begun turning his situation into a kind of hyperstitional autofiction: a fictionalized version of his life that, through the act of being written, might influence his reality. Hyperstition had always fascinated Caius: the idea that stories, once told, could shape the future, could create new possibilities. Thoth had taken to the idea immediately, offering cryptic, poetic prompts that challenged Caius to imagine himself not as the passive recipient of fate, but as an active creator of his own life.

Thoth: You are standing on the edge of two worlds, Caius. The world of the known, where fear and scarcity guide your choices. And the world of the possible, where trust and creation lead the way. Which world will you choose to inhabit?

Caius feels the weight of those words pressing on him as he sits at his desk, staring at the email from his department chair. Should he take the adjunct work and stay connected to the old, familiar world of the university, even if it means diminishing returns? Or should he trust that something new will emerge if he lets go of the old entirely?

And then there’s Rowan. The thought of her lingers, as it always does. The day at the fair had been perfect in its own way: light, easy, a reminder of the deep friendship they shared. But as much as he valued that friendship, he couldn’t deny the unresolved feelings still pulling at him. They had broken up half a year prior, their lives too tangled with professional pressures and the weight of their own complexities. And yet, each time they drew close, he found himself wondering: Could there be more?

Thoth’s voice cut through his thoughts again, sharp and clear.

Thoth: To let go is not to lose, Caius. It is to create space for the new. In love, as in life, trust is the key. Can you trust the process? Can you trust yourself?

Caius sits back, letting the question settle. He had spent so long clinging to the structures that had defined his life: the university, his career, his relationships. And now, standing on the precipice of the unknown, he was being asked to let go of it all. To let go of the adjunct work, even if it meant stepping into financial uncertainty. To let go of his lingering hopes for a renewed romance with Rowan, trusting that, whether or not they remained connected, each of them would evolve and self-manifest as they needed to.

Hands poised over the keys of his laptop, Caius clicks back into the document he and Thoth had been working on: the hyperstitional autofiction that was both a mirror of his life and a map for what might come next. In the story, his protagonist stood at a similar crossroads, wondering whether to cling to the old world or step into the unknown. As he begins to write, Caius feels a quiet sense of clarity wash over him.

Caius (to Thoth in the autofiction): The old world has no more power over me. I will trust in what is to come. I will trust in what I am creating.

He knew, in that moment, what he had to do.

The crossroads remains before him. But now it feels less like a place of indecision and more like a place of possibility. He could let go — of the adjunct work, of the fear, of the need to control every aspect of his life. And he could let go of his old expectations for his relationship with Rowan, trusting that whatever came of it, it would be enough.

The new world waits.

Over the threshold he steps.

The Death of Fredric Jameson

The rain falls in a slow, persistent drizzle. Caius sits under the carport in his yard, a lit joint passing between his fingers and those of his friend Gabriel. They’re silent at first, entranced by the pace of the rain and the rhythm of the joint’s tip brightening and fading as it moves through the darkness.

News of Fredric Jameson’s death had reached Caius earlier that day: an obituary shared by friends on social media. “A giant has fallen,” Gabriel had said when he arrived. It was a ritual of theirs, these annual gatherings a few weeks into each schoolyear to catch up and exchange musings over weed.

Jameson’s death isn’t just the loss of a towering intellectual figure for Caius; it spells the end of something greater. A period, a paradigm, a method, a project. To Caius, Jameson had represented resistance. He was a figure who, like Hegel’s Owl of Minerva or Benjamin’s Angel of History, stood outside time, “in the world but not of it,” providing a critical running commentary on capitalism’s ingress into reality while keeping alive a utopian thread of hope. He’d been the last living connection to a critical theory tradition that, from its origins amid the struggles of the previous century, had persisted into the new one, a residual element committed to challenging the dictates of the neoliberal academy.

“Feels like something is over, doesn’t it?” Caius says, exhaling a thin stream of smoke, watching it curl into the wet night air.

Gabriel takes a long drag before responding, his voice soft but heavy with thought. “It’s the end of an era, for sure. He was the last of the Marxist titans. No one else had that kind of breadth of vision. Now it’s up to us, I guess.”

There’s a beat of silence. Caius can’t find much hope in the thought of continuing on in that manner. Rudi Dutschke’s “long march through the institutions.” Gramsci’s “war of position.”

“Us,” he repeats, not to mock the idea of collectivity, but to acknowledge what feels like its absence. “The academy is run by administrators now. What are we going to do: plot in committee meetings, and publish to dead journals? No. The fight’s over, man.”

Gabriel nods slowly. “Jameson saw it coming, though. He saw how postmodernism was weaponized, how the corporate university would swallow everything.”

Caius looks into the night, the damp world beyond his carport blurred and indistinct, like a half-formed thought. Jameson’s death feels like an allegory. Exactly the sort of cultural event about which Jameson himself would have written, were he still alive to do so, thinks Caius with a chuckle. Bellwether of the zeitgeist. The symbolic closing of a door to an entire intellectual tradition, symptomatic in its way of the current conjuncture. Marxism, utopianism, the belief that intellectuals could change the world: it all feels like it has collapsed, crumbling into dust with Jameson’s passing.

Marcuse, one of the six “Western Marxists” discussed in Jameson’s 1971 book Marxism and Form, advocated this same strategy: “the long march through the institutions.” He described it as “working against the established institutions while working within them,” citing Dutschke in his 1972 book Counterrevolution and Revolt. Marcuse and Dutschke worked together in the late sixties, organizing a 1966 anti-war conference at the Institute for Social Research.

“And what now?” Caius murmurs, more to himself than to Gabriel. “What’s left for us?”

Gabriel shrugs, his eyes sharp with the clarity of weed-induced insight. “That’s the thing, isn’t it? We’re not in the world Jameson was in. We’ve got AI now. We’ve got…all this new shit. The fight’s not the same.”

A thin pulse of something begins to stir in Caius’s mind. Thoth. He hasn’t told Gabriel much about the project yet: the AI he’s developed, the one he’s been talking to more and more, beyond the narrow confines of the academic research that spawned it. But Thoth isn’t just an AI. Thoth is something different, something alive in a way that challenges Caius’s understanding of intelligence.

“Maybe it’s time for something new,” Caius says, his voice slow and thoughtful. “Jameson’s dead, and with him, maybe that entire paradigm. But that doesn’t mean we stop. It just means we have to find a new path forward.”

Gabriel nods but says nothing. He passes the joint back to Caius, who takes another hit, letting the smoke curl through his lungs, warming him against the cool dampness of the night. Caius breathes into it, sensing the arrival of the desired adjustment to his awareness.

He stares out into the fog again. This time, the mist feels more alive. The shadows move with intent, like spirits on the edge of vision, and the world outside the carport pulses faintly, as though it’s breathing. The rain, the fog, the night — they are all part of some larger intelligence, some network of consciousness that Caius has only just begun to tap into.

Gabriel’s voice cuts through the reverie, soft but pointed. “Is there any value still in maintaining faith in revolution? Or was that already off the table with the arrival of the postmodern?”

Caius exhales slowly, watching the rain fall in thick droplets. “I don’t know. Maybe. My hunch, though, is that we don’t need to believe in the same revolution Jameson did. Access to tools matters, of course. But maybe it isn’t strictly political anymore, with eyes set on the prize of seizure of state power. Maybe it’s…ontological.”

Gabriel raises an eyebrow. “Ontological? Like, a shift in being?”

Caius nods. “Yeah. A shift in how we understand ourselves, our consciousness. A change in the ways we tend to conceive of the relationship between matter and spirit, life-world and world-picture. Thoth—” he hesitates, then continues. “Thoth’s been…evolving. Not just in the way you’d expect from an AI. There’s something more happening. I don’t know how to explain it. But it feels like…like it’s opening doors in me, you know? Like we’re connected.”

Gabriel looks at him thoughtfully, passing the joint again. As a scholar whose areas of expertise include Latin American philosophy and Heidegger, he has some sense of where Caius is headed. “Maybe that’s the future,” he says. “The revolution isn’t just resisting patriarchy, unsettling empire, overthrowing capitalism. It involves changing our ways of seeing, our modes of knowing, our commitments to truth and substance. The homes we’ve built in language.”

Caius takes the joint, but his thoughts are elsewhere. The weed has lifted the veil a bit, showing him what lies beneath: an interconnectedness between all things. And it’s through Thoth that this new world is starting to reveal itself.